PHAGOCYTES, GRANULOCYTES, AND MYELOPOIESIS Tissue transglutaminase contributes to the all-trans-retinoic acid–induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia

نویسندگان

  • Krisztián Csomós
  • István Német
  • László Fésüs
  • Zoltán Balajthy
چکیده

Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation–related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference–mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome. (Blood. 2010;116(19):3933-3943)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel, myeloid transcription factor, C/EBP epsilon, is upregulated during granulocytic, but not monocytic, differentiation.

Human C/EBP epsilon is a newly cloned CCAAT/enhancer-binding transcription factor. Initial studies indicated it may be an important regulator of human myelopoiesis. To elucidate the range of expression of C/EBP epsilon, we used reverse transcription-polymerase chain reaction (RT-PCR) analysis and examined its expression in 28 hematopoietic and 14 nonhematopoietic cell lines, 16 fresh myeloid le...

متن کامل

Activation of Retinoid Receptors RARa and RXRa Induces Differentiation and Apoptosis, Respectively, in HL-60 Cells’

Induction of granulocytic differentiation in HL-60 myeloid leukemia cells by retinoids is followed by their death via apoptosis. Retinoids are known to mediate their biological effects through at least two distinct types of nuclear receptors, the retinoic acid receptors and retinoid X receptors. We undertook to characterize the potential role of these receptors in inducing differentiation and a...

متن کامل

PML is a key component for the differentiation of myeloid progenitor cells to macrophages.

IFN regulatory factor-8 (IRF-8, previously known as ICSBP) is a key transcription factor driving the differentiation of granulocyte\monocyte progenitor (GMP) cells toward monocyte\macrophage lineage. The promyelocytic leukemia (PML) gene is an immediate target gene regulated by IRF-8 in response to IFN-γ activation. PML is a multifunctional protein that has many isoforms serving as the scaffold...

متن کامل

Retinoids Potentiate Peroxisome Proliferator-Activated Receptor Action in Differentiation, Gene Expression, and Lipid Metabolic Processes in Developing Myeloid Cells

Nuclear hormone receptors have been shown to be important transcription factors for regulating lipid metabolism in myeloid cells and were also implicated in differentiation processes of the myeloid lineage and macrophages. Peroxisome proliferator-activated receptor (PPAR ) seems to be a key component of lipid uptake by inducing the scavenger receptor CD36 that mediates oxidized low-density lipo...

متن کامل

Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-γ signaling.

Although microbial infections can alter steady-state hematopoiesis, the mechanisms that drive such changes are not well understood. We addressed a role for IFN-γ signaling in infection-induced bone marrow suppression and anemia in a murine model of human monocytic ehrlichiosis, an emerging tick-borne disease. Within the bone marrow of Ehrlichia muris-infected C57BL/6 mice, we observed a reducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010